返回
当前位置:首页>智能机器人>正文

人脸识别三大经典算法是什么?

来源:TechTMT.Com  作者:整理  日期:2022-05-12 14:29:29

人脸识别算法是指在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。人脸识别有三大经典算法,我们来看看具体是什么吧。

Face recognition 人脸识别

人脸识别三大经典算法

特征脸法(Eigenface)

特征脸技术是近期发展起来的用于人脸或者一般性刚体识别以及其它涉及到人脸处理的一种方法。使用特征脸进行人脸识别的方法首先由 Sirovich 和 Kirby(1987)提出(《Low-dimensional procedure forthe characterization of human faces》),并由 Matthew Turk 和 Alex Pentland 用于人脸分类(《Eigenfaces for recognition》)。首先把一批人脸图像转换成一个特征向量集,称为“Eigenfaces”,即“特征脸”,它们是最初训练图像集的基本组件。识别的过程是把一副新的图像投影到特征脸子空间,并通过它的投影点在子空间的位置以及投影线的长度来进行判定和识别。

将图像变换到另一个空间后,同一个类别的图像会聚到一起,不同类别的图像会聚力比较远,在原像素空间中不同类别的图像在分布上很难用简单的线或者面切分,变换到另一个空间,就可以很好的把他们分开了。

Eigenfaces 选择的空间变换方法是 PCA(主成分分析),利用 PCA 得到人脸分布的主要成分,具体实现是对训练集中所有人脸图像的协方差矩阵进行本征值分解,得到对应的本征向量,这些本征向量就是“特征脸”。每个特征向量或者特征脸相当于捕捉或者描述人脸之间的一种变化或者特性。这就意味着每个人脸都可以表示为这些特征脸的线性组合。

局部二值模式(Local Binary Patterns,LBP)

局部二值模式(Local binary patterns LBP)是计算机视觉领域里用于分类的视觉算子。LBP,一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的 T.Ojala 等人在 1996 年提出(《A comparative study of texturemeasures with classification based on featured distributions》)。2002 年,T.Ojala 等人在 PAMI 上又发表了一篇关于 LBP 的文章(《Multiresolution gray-scale androtation invariant texture classification with local binary patterns》)。这一文章非常清楚的阐述了多分辨率、灰度尺度不变和旋转不变、等价模式的改进的 LBP 特征。LBP 的核心思想就是:以中心像素的灰度值作为阈值,与他的领域相比较得到相对应的二进制码来表示局部纹理特征。

LBP 是提取局部特征作为判别依据的。LBP 方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP 的识别率已经有了很大的提升。

Fisherface 算法

线性鉴别分析在降维的同时考虑类别信息,由统计学家 Sir R. A.Fisher1936 年发明(《The useof multiple measurements in taxonomic problems》)。为了找到一种特征组合方式,达到最大的类间离散度和最小的类内离散度。这个想法很简单:在低维表示下,相同的类应该紧紧的聚在一起,而不同的类别尽量距离越远。1997 年,Belhumer 成功将 Fisher 判别准则应用于人脸分类,提出了基于线性判别分析的 Fisherface 方法(《Eigenfaces vs. fisherfaces:Recognition using class specific linear projection》)。

编辑:太初
版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。文章版权归原作者所有,内容不代表本站立场!
免责声明: 阁下应知本站所提供的内容不能做为操作依据。本站作为信息内容发布平台,不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考! 如文中内容影响到您的合法权益(含文章中内容、图片等),请及时联系本站,我们会及时删除处理。